Threading on the Node

OpenMP works great if it is implemented
correctly

COMPUTE | STORE | ANALYZE

Looking at KNL ='='A‘Y®‘ |

\
S \

e Lots of cores
e While MPI can run across all the cores, there are situations where MPI
hits bottlenecks due to the number of MPI tasks on the node
e We ALWAYS want to run multiple MPI tasks on the node \

o Want to identify a MP| sweet spot _
e A good guide is to start with a MPI task on each NUMA region

e OpenMP |
e Traditional approach has many short-comings
e Requires a lot of code modifications

e Lots of Comment Line directives
e Does not deal with locality
¢ Difficult to load balance

e Is there a better way?

e SPMD OpenMP

e Fewer code modifications
e Requires a better understanding of threads

e KNL has NUMA issues

COMPUTE | STORE | ANALYZE

.

Cluster Mode: Quadrant ¢

'MCDRAM MCDRAM pcie | MCDRAM MCDRAM

! ; ; ;

EDC

Chip divided into four virtual
Quadrants

Tile

Tile

Address hashed to a Directory in
the same quadrant as the Memory

Tile

Tile

Affinity between the Directory and
Memory

Tile

Tile

EDC

Lower latency and higher BW than
all-to-all. SW Transparent.

'MCDRAM MCDRAM 'MCDRAM MCDRAM

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

1 \
Why does all-MPI work well on multi/many core —LAas |
architectures? «

e All MPI forces locality
e Each MPI task allocated/utilizes memory within the NUMA region that
it is running in.
e All MPI allows tasks to run asynchronously

e This allows very good sharing of the memory bandwidth available on
the node

e We have found that KNL Quadrant mode is very good for all-MPI due
to the memory bandwidth sharing to all memories

e One MPI disadvantage is that re-distributing work is

difficult and inefficient
e Have to move a lot of data

COMPUTE | STORE | ANALYZE

Can we take clues from all-MPI advantages and ol
disadvantages to design a good OpenMP code? ==A:Y

\

S \
\

e Can we force locality like MPI does?
e MPI forces each MPI task to allocate the data that it uses.
e Tradition OpenMP has no notion of locality
e Can we allow threads to work asynchronously?
e MPI only barriers when messages are exchanged
e Tradition OpenMP implies barriers after a parallel region
e Loop level parallelism forces too much synchronization
e Can we somehow control scheduling of the threads to
enable more dynamic re-distribution of work

COMPUTE | STORE | ANALYZE

\
Can we force locality like MPI does? SRS

\

S \
\

e Introduce a high level !$OMP PARALLEL region

e Down the call chain the user is responsible for managing threads
e Initialize shared data within the ISOMP PARALLEL region, each thread
allocates the data it will be using

e Application developer must assure that shared data is shared as in the
Fortran/C/C++ convention
e This can be an issue down the call chain, when a shared local variable is
required; that is, a reduction variable
e Application developer must assure that private data is allocated on stack as
with the Fortran and C conventions

COMPUTE | STORE | ANALYZE

What if you need a shared variable down the call RS
chain 08

Subroutine within_a_parallel()
Real, pointer :: shared p(:)
ISomp single

allocate(shared _p(0:100))
ISomp end single copyprivate(share p)

End subroutine

i
Can we allow threads to work asynchronously? CRAaNyY |
)

\

S \
\

e Must minimize sychronization
e Calling un-treaded routines
e Must extend concept to all computational kernels
e You can have replicated computation across the threads
e Calling library routines
e Can each thread call a un-threaded library routine
e If library routine is threaded — must barrier prior to and after call

e Calling MPI

e Consider having each thread do it own message passing
e Example coming

COMPUTE | STORE | ANALYZE

Slide 9

W(<(>>) =EAT

High-level OpenMP and Thread Scalable MPI-
RMA:

Application Study with the Wombat Astrophysical MHD Code

Wombat Driver and Parallel Region

Slide 10

Setup and object constructors

Thread parallel region

Array allocation and initialization

Time step loop

DomainSolver%solve(mhd)
DomainSolver%solve(ct)
DomainSolver%solve(passive)
DomainSolver%solve(particle kick+drift)
FMGSolver%solve(all levels)
DomainSolver%solve(particle kick)

I/O data dump(s)

Update time step

Array cleanup

Object destructors

Simulation complete

Communication Concerns .

e If a rank is made much wider with threads, serialization around MPI

will limit thread scaling and overall performance
e Nearly all MPI libraries implement thread safety with a global lock
e Cray Is addressing this issue

e Released per-object lock library
e Threading enhancements under design now for two-sided (released per-object lock library

a first step)

e Wide OpenMP also means more communication to process
e Every Patch now has its own smaller boundaries to communicate
e Starts tipping the behavior towards the message rate limit
e Two-sided tag matching cannot be done in parallel and will limit thread scaling
e May start hitting tag limit

e Slower serial performance of KNL => maybe look for the lightest

weight MPI layer available
e MPI-RMA over DMAPP on Cray systems is a thin software layer that achieves

similar performance to SHMEM

COMPUTE | S TORE A NALY ZE

Slide 11

RMA Boundary Communication Cycle SRS

e
e \

\
o Sln le passive RMA exposure epoch used for the duration of the application
o explicit synchronization between ranks

. \
e RMA semantics make computation/communication overlap simpler to achieve \

Source Rank Neighbor Rank

pack boundary [other work]

» message length @ poll + [other work] I

PUT message length

bulk Win_ flush

time

GET message

[other work]
[other work]

bulk Win_flush

unpack boundary

@ poll + [other work] I completion

PUT completion signal
bulk Win_ flush

Slide 12

Thread Hot MPI-RMA TSR

e DMAPRP library was enhanced to be “thread hot” for SHMEM
e ‘“thread hot” is more than “thread safe”
e ‘“thread hot” implies concurrency and performance across threads was central to the design

e MPI-RMA over DMAPP leverages this feature as of MPT 7.3.2
e No locks used in DMAPP layer
Very light weight locking in MPI layer
Design makes it very likely that locks are uncontended
Network resources efficiently managed among threads
Performance approaches that of N independent processes when using N threads

e Example on HSW with 16 threads each on 2 nodes
e OSU passive MPI_Put bandwidth for 8 B message
MPT 7.3.1 = 5.27 MB/s

[J
e MPT7.3.2=399.9 MB/s
e 75X improvement

COMPUTE S TORE A NALY ZE

Slide 13

Haswell Thread Strong Scaling
32 Core - 2.3 GHz - 8,388,608 Zones

32

sec / update

Patch Size

— 322
—— 54

——— deal

—— 327 (turbo enabled)
—8— 54> (turbo enabled)

e Tunable Patch size very important to performance

Slide 14

4

of threads

8

16

32

\
A EE—— w@ \
XC40 BDW Weak Scaling S
1 rank per node - 36 threads per rank - 7,776,000 zones per rank LY
2.4
f — -
e
Configuration
2.2 —— global lock MPI-RMA (MPT 7.3.1)
=@ thread hot MPI-RMA (MPT 7.3.2)

2
©
g o
=%
=
—

© 2.0 1
D
w

1.8

Bé 1é8 542

2048 8192

32768
of cores

e Rank reordering
e Cartesian domain optimization for XC topology/placement improves largest run wall time by additional
2.3%

Slide 15

sec / update

Broadwell Threads/Ranks Comparison i
968 Nodes - 36 Cores per Node - 2.1 GHz - 8,388,608 Zones

2.50
2.25 1
—

2.00 .

P
1.75 1
1.50

1 °] 18 36

of threads per MPI rank

e Less than 8% difference between 1 and 36 threads per rank
e ldeal for application like Wombat is 0%

Slide 16

Can we somehow control scheduling of the threads =.|= AY |
to enable more dynamic re-distribution of work ~

S \
\

e With SPMD OpenMP, the user can take the responsibility
for allocating the work to the threads :
e Can be simple chunking

e Can understand the scarcity of the problem and allocate work
accordingly

e Can dynamically use runtime statistics to address load-imbalance

AT 'V
4‘(

HBM code modernization -
insights from a Xeon Phi experiment

Jacob Weismann Poulsen, DMI, Denmark
Per Berg, DMI, Denmark
Karthik Raman, Intel, USA

The data Is sparse and highly irregular

8000

Data layout for threads (or tasks + explicit halo)

% Each tread will handle a subinterval of columns:

~ Another layout of the columns will impose another
decomposition for the threads (and the tasks).

!$OMP PARALLEL DEFAULT(SHARED)
call foo(...);call bar(...); ...
1$0MP BARRIER

call halo_update(...)

1$0MP BARRIER

call baz(...);call quux(...); ...

1$OMP END PARALLEL

subroutine foo(...) I
ééil domp_get_domain(kh, 1, iw2, nl, nu, idx)

do iw=nl, nu
i = 1ind(1,iw)
j = ind(2, iw)
I all threadlocal wet-points (:,:,:) are reached here

enddo

~

tflow_int scaling on IVB Xeon (E5-2697v2@2.7Ghz)

14

- scale_xeon.txt
ol Amdahl 97.00%

....... Amdahl 98.00% o*

'.
o
10F d
o0t
LR
W
8 et
o
o‘..
| ..o'
... 000
< g0?
B 1
o)
4t o*
0
o
..o

2r ¢

v

c
0 \ 1 1 l
: = % 30 40 50

#threads (baseline:2)

30

251

20

15r

10r

tflow_int scaling on Xeon Phi (7120A@1.238Ghz)

0 scale_knc.txt .’
...... Amdahl 100.00% L
....... Amdahl 99.00% o

Amdahl 98.00% o

o’
K
()
.“c
...
. '
o
o
°
,o'.
o
... ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

,o‘.,-"“ _________________

.

o
o

’ 50 100 150 200 250

#threads (baseline: 8)

21

ECMWF workshop on scalability, April 2014

What about performance portability — —P-CUL

Q \
S \
\

e When running S3D on Titan we used Cuda Streams
extensively \

e Consider using the 16 Cuda streams for the 16 threads within the
SPMD unit.

@ seions - (X% = [F~[RB- 0D ¢ 4B ILIDES
" c\Users\levesque\Desktop\d: 2.F.opt v . [~v . c\Users\levesque\Desktop\dssum2.F.opt2 I
10/28/2014 1:33:58 PM 24,114 bytes <default> ¥ ANSI v UNIX 10/28/2014 1:33:48 PM 24,284 bytes <default> ¥ ANSI v UNIX
=3 a |G t@=dclock()
1$ACC DATA PRESENT(ids_lgll,ids_ptr,ug,u) 1$ACC DATA PRESENT(ids_lgll,ids_ptr,ug,u)
1$ACC& CREATE(ug2) 19ACC& CREATE(ug2)
call rzero_acc(ug ,stride*n) call rzero_acc(ug ,stride*n)
call rzero_acc(ug2,stride*n_nonlocal) call rzero_acc(ug2,stride*n_nonlocal)
> !$ACC PARALLEL LOOP GANG @
do k = @,stride-1 do k = @,stride-1
> !$ACC LOOP VECTOR ¢ !'$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1)
L | !$ACC& PRIVATE(il,sil,sig)
do i=1,nglobl ! local QT do i=1,nglobl ! local QT
!$ACC LOOP SEQ !$ACC LOOP SEQ
do j = ids_ptr(i),ids_ptr(i+l)-1 do j = ids_ptr(i),ids_ptr(i+l)-1
il=ids_lgli(j) il=ids_lgli(j)
sil = k*n+il sil = k*n+il
if (i.le.n_nonlocal) then ! MPI if (i.le.n_nonlocal) then ! MPI
sig = k*n_nonlocal+i sig = k*n_nonlocal+i
ug2(sig) = ug2(sig)+u(sil) ug2(sig) = ug2(sig)+u(sil)
else else
sig = k*n+i sig = k*n+i
ug(sig) = ug(sig)+u(sil) ug(sig) = ug(sig)+u(sil)
endif endif
endde endde
enddo enddo
= (]
L | !$ACC UPDATE HOST(ug2(k*n_nonlocal+l:(k+1)*n_nonlocal)) ASYNC(k+1)
enddo enddo
=]
19ACC UPDATE HOST(ug2) ASYNC(1)
1$ACC WAIT(1) 1$ACC WAIT
t@=dclock()
call gs_op_fields(gsh_face_acc,ug2,n_nonlocal,stride,1,1,8) ! 1===>+ call gs_op_fields(gsh_face_acc,ug2,n_nonlocal,
call measure_comm(t@) & stride,1,1,0) ! 1===>+
1SACC UPDATE DEVICE(ug2) ASYNC(2)
13ACC WAIT(2)
!$ACC PARALLEL LOOP GANG E|
do k = @,stride-1 do k = @,stride-1
=2 < !$ACC UPDATE DEVICE(ug2(k*n_nonlocal+l:(k+1)*n_nonlocal)) ASYNC(k+1)
=l 1]
[.; 11 Default text 4 13 11 Default text < »
R ieieuteiebiutebebuteiebetutetebuteiebtutetebututebeuteiebtutetebiutetetutetetuteiebutetebetetetutetebstutetebuteiet J
Y et 9
<

UH Workshop on OpenACC

Example of Cuda Streams (1)

!$ACC DATA PRESENT (ids 1lgll,ids ptr,ug,u)
!SACC& CREATE (ug?2)

call rzero acc(ug ,stride*n)

call rzero acc(ug2,stride*n nonlocal)

do k = 0,stride-1
!SACC PARALLEL LOOP GANG VECTOR ASYNC (k+1)
!SACC& PRIVATE (il,sil,siq)
do i=1,nglobl ! local Q"T
!SACC LOOP SEQ
do j = ids ptr(i),ids ptr(i+l)-1
il=ids_1gll(J)
sil = k*n+il
if (i.le.n nonlocal) then ! MPI
sig = k*n nonlocal+i
ug2 (sig) = ug2(sig)+u(sil)

else
sig = k*n+i
ug (sig) = ug(sig)+u(sil)
endif
enddo
enddo
!$ACC UPDATE HOST (ug2 (k*n nonlocal+l: (k+1l)*n nonlocal)) ASYNC (k+1)
enddo
!SACC WAIT

UH Workshop on OpenACC

Example of Cuda Streams (2)

do k = 0,stride-1
!$ACC UPDATE DEVICE (ug2(k*n nonlocal+l: (k+1l)*n nonlocal)) ASYNC (k+1)

!SACC PARALLEL LOOP GANG VECTOR ASYNC (k+1)
!SACC& PRIVATE(il,sil,siqg)
do i=1,nglobl ! local Q
!SACC LOOP SEQ
do j = ids ptr(i),ids ptr(i+l)-1

il = ids 1gll(3)
sil = k*n+il
if (i.le.n nonlocal) then ! MPI
sig = k*n nonlocal+i
u(sil) = ug2(siqg)
else
sig = k*n+i
u(sil) = ug(siqg)
endif
enddo
enddo
enddo
!SACC WAIT

!SACC END DATA

UH Workshop on OpenACC

Conclusion S

e To scale well on many/multi-core systems, application
developers must develop efficient threading
e Must pay attention to NUMA regions
e Must avoid overhead caused by
e T00O much synchronization
e Load imbalance
e On some systems all-MPI will perform very well and will
out-perform poorly implemented OpenMP
e Not performance portable to hosted accelerators

e SPMD or Wide OpenMP is an alternative

o Application developers have all the power to generate difficult to find
race conditions, must understand the implications of high level
threading

UH Workshop on OpenACC

